Stable orbit equivalence of Bernoulli shifts over free groups

نویسنده

  • Lewis Bowen
چکیده

Previous work showed that every pair of nontrivial Bernoulli shifts over a fixed free group are orbit equivalent. In this paper, we prove that if G 1 , G 2 are nonabelian free groups of finite rank then every nontrivial Bernoulli shift over G 1 is stably orbit equivalent to every nontrivial Bernoulli shift over G 2. This answers a question of S. Popa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbit Equivalence, Coinduced Actions and Free Products

The following result is proven. Let G 1 T 1 (X 1 , µ 1) and G 2 T 2 (X 2 , µ 2) be orbit-equivalent, essentially free, probability measure preserving actions of countable groups G 1 and G 2. Let H be any countable group. For i = 1, 2, let Γ i = G i * H be the free product. Then the actions of Γ 1 and Γ 2 coinduced from T 1 and T 2 are orbit-equivalent. As an application, it is shown that if Γ i...

متن کامل

Isomorphism invariants for actions of sofic groups

For every countable group G, a family of isomorphism invariants for measurepreserving G-actions on probability spaces is defined. In the special case in which G is a countable sofic group, a special class of these invariants are computed exactly for Bernoulli systems over G. This leads to a complete classification of Bernoulli systems for many countable groups including all finitely generated l...

متن کامل

Cocycle and Orbit Equivalence Superrigidity for Bernoulli Actions of Kazhdan Groups

We prove that if a countable discrete group Γ contains an infinite normal subgroup with the relative property (T) (e.g. Γ = SL(2,Z) ⋉Z, or Γ = H × H with H an infinite Kazhdan group and H arbitrary) and V is a closed subgroup of the group of unitaries of a finite von Neumann algebra (e.g. V countable discrete, or separable compact), then any V-valued measurable cocycle for a Bernoulli Γ-action ...

متن کامل

Bernoulli Actions of Low Rank Lattices and Countable Borel Equivalence Relations

Using Zimmer’s cocycle superrigidity theorems [27], we obtain Borel nonreducibility results for orbit equivalence relations arising from Bernoulli actions of suitably chosen low-rank lattices in real and p-adic Lie groups. In particular, for p a prime, let Ep (respectively Fp) denote the orbit equivalence relation arising from any nontrivial Bernoulli action of PSL2(Z[ √ p ]) (respectively PSL2...

متن کامل

Weak Equivalence and Non-classifiability of Measure Preserving Actions

Abért-Weiss have shown that the Bernoulli shift sΓ of a countably infinite group Γ is weakly contained in any free measure preserving action a of Γ. Proving a conjecture of Ioana we establish a strong version of this result by showing that sΓ × a is weakly equivalent to a. Using random Bernoulli shifts introduced by Abért-Glasner-Virag we generalized this to non-free actions, replacing sΓ with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009